The ATLAS Beam Conditions Monitor

- Design/Goal of BCM
- The Collaboration
- The detector system hardware
- Testbeam results
- Performance Simulations
- Canadian contributions

William Trischuk University of Toronto December 13, 2007

ATLAS Beam Conditions Monitor

- ATLAS plans to use time of flight to distinguish beam collisions from background
- Optimal separation is 4.1m
- Ideal support in pixel space-frame 3.8m apart

- Use CVD diamond sensors
 - 10x faster and 10x more radiation hard than silicon
- Very fast, rad hard GaAs front end amplifier

Front-End Readout Electronics

- Designed and developed by the Vienna group
- Peaking time of less than 3 ns

• Response to test-pulses 5 ns apart

Who is Working on the ATLAS BCM

- Toronto
 - Diamonds, mechanical integration, simulation and testbeam
- Ohio State
 - Diamond characterisation, sensor preparation, packaging
- CERN
 - Module assembly and back-end readout
- Vienna
 - Front-end amplifier design/production
- Ljubliana
 - Testbeam analysis, radiation hardness, integration, cabling

Module with Cable

Module Support Bracket

- Designed in Toronto
- SLA manufactured by Pixel group
- Small parts + QA done in Canada
- Now all at CERN

Mechanical Installation (January 2007)

BCM Geometry in Simulation

- Full GEANT model of BCM module boxes and support brackets
 - In ATLAS ID simulation

- Study occupancies and arrival times in minbias collisions
- First look at showers of lost particles

Minimum Bias Collisions

Simulated 7 TeV Lost Proton

Beam Scraping Simulations

- Three injection loss scenarios
 - 1. Scraping on ATLAS pipe
 - 2. Scraping on incoming TAS
 - 3. Scraping on outgoing TAS

Hit Distribution Across Modules

TAS Scrape BP Scrape

Angular distribution of BCM hits

Testbeam Setup at CERN

Beam Profile and BCM Hit Efficiency

Testbeam Signal Distributions

Digitisation Performance

• Using ALICE-TPC standard ADC (NINO) digitiser

- Results from 2007 testbeam
 - Median signal: 335 mV
 - Inferred noise: 31 mV
 - System S/N = 11:1

FPGA Back-End Beam Loss/Abort Logic

• Implemented/tested in 2007 testbeam runs with spare BCM modules

T pending	accepted rejected withdrawn not suitable published
preprints	
Document JINST_004P_1207	
1	correspondence all versions
preprint status	
Preprint number:	JINST_004P_1207
arXiv preprint number:	Not available
Title:	The ATLAS Beam Conditions Monitor
All authors:	V. Cindro, I. Dolenc, H. Frais-Kolbl, A. Gorisek, E. Griesmayer, H. Kagan, G. Kramberger, I. Mandic, M. Mikuz, M. Niegl, H. Pernegger, D. Tardif, W. Trischuk, P. Weilhammer, M. Zavrtanik
Corresponding author:	William Trischuk (william@physics.utoronto.ca)
Abstract:	pop-up
Key words:	Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) [100] Solid state detectors [50] Timing detectors [25] Instrumentation and methods for time-of-flight (TOF) spectroscopy [25]

Canadian Contributions to BCM

- Acquisition of 20 diamond sensors (\$26k)
- Acquisition and integration of iSEG HV supplies (\$10k)
- Source'd and acquired module power connectors (\$3k)
- Design and QA for BCM module brackets (Cadabeschi) (SLA + PEEK parts \$2k)
- Acquisition of Gore air-core signal cables (\$7k)
- Implemented BCM geometry in ATLAS simulation (Bendavid, Mazini)
- GEANT simulations of lost beam and commissioning (Tan, Tardif)

Full partners in BCM – contributing 1/3 of effort and equipment

Summary

- Eight BCM modules installed in ATLAS June 2007
- First readout in pit early 2008
- Now working on beam accident simulations
- Use simulations to guide design of trigger logic
- Prepare and deploy final beam loss signals in spring 2008
- Fully integrate into LHC machine commissioning

Possibly the first detector to observer LHC collisions

H. Pernegger 25/4/2007